Collaborative Cloud Computing for Structural Health Monitoring using Jupyter Lab

*Ki-Young Koo¹⁾

¹⁾ Faculty of Environment, Science and Economics, University of Exeter, Exeter, EX4 4QF, UK

¹⁾ <u>k.y.koo@exeter.ac.uk</u>

ABSTRACT

This study demonstrates advantages of Jupyter Lab as a highly efficient collaborative cloud platform for structural health monitoring applications. Structural Health Monitoring involves several steps: retrieving incoming data from sensors installed on structure, managing, and processing a large dataset (often Terra-bytes). In terms of retrieval of incoming data, it is not straightforward to place such a server in a campus or company network due to network security risk of the entire domain, but a cloud computer is a good alternative. In terms of signal processing on a large dataset, it is not straightforward to share the entire dataset as each researcher has to download the entire dataset to a local computer. However, Jupyter Lab in a cloud computer can be a promising alternative as Jupyter Lab allows the researcher to write their own signal processing code in Python in the cloud, to get it executed and the results visualised all on the cloud without downloading any data file. This study presents two examples of Jupyter Lab based structural health monitoring applications for a 319m transmission tower and an industrial chimney.

5	File Edit View Run H	Korrel Tabo	Settings Hel	2					_				
0	+ Ba & C Ba / / guyenon / codes / Name • Ba backup Ba japylar D Rm05_backup.py#	8 + 3	for i in r plat(W grid(True) xlabel('Wi ylabel('AC legend()	C Ho ange(9): s[:,0],RHSD[ind Speed (mp C RHSD (g)')	Code (,1],marke ()))	* rs[iet(i/3))	t_monitoring ×					■ m06_ana)	ysist.jpynb 3 Python 3
b	gmon.py	[24]	<matplatli< td=""><td>a.legend.Leg</td><td>end at 6x7</td><td>f258cd3c5c8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></matplatli<>	a.legend.Leg	end at 6x7	f258cd3c5c8							
	 big mit_Wind_dataFlo mit_Wind_dataFlo mit2_maintenance py mit3_backup2NA5.py test_payload_ib_fle 		412										
ħ			410			•				 CA3 CA1 CA2 CA2 			
			ACC RIMELD IG1										
			834										
			0.00	liliti	ilitii	interit	atitant inte	tele e	10 00082 I	8			
		(20)		ange(9): RMSD[:,1]>0.	01		/3)].markersii	e-10.Labe	Lenc (JAQ) 1. for	nat(int(i	31+1, 53+1	0)	

Fig. 1 Jupyter Lab web interface for writing, and executing a signal processing code together with visualization, all on a cloud computer

¹⁾ Senior Lecturer